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ABSTRACT

The advent of parallel computing systems enabled the users with huge computation power

to efficiently process huge work loads. Most of the recent applications, which are data intensive,

require parallel computing power to complete the job efficiently. To facilitate efficient computing

there is a necessity for simplified abstraction of the parallel computing systems.

We propose one such parallel computation abstraction, designed to solve All-Pairs prob-

lems which fits the needs of several data intensive applications. All-Pairs problems require

each data element to be paired with every other data element. This framework aims to address

recurring problems of scalability, distributing equal work load to all nodes and reducing mem-

ory footprint. Our framework reduces memory footprint of All-Pairs problems, by reducing

memory requirement from N/
√
P to 3N/P . A bio-informatics application is implemented to

demonstrate the scalability (ranging up to 512 cores), redundancy management and speed up

performance of the framework(super-linear speed up).
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CHAPTER 1. THE PROBLEM: MOTIVATION

All research and business fields are witnessing increase of data being generated in large

volumes. Algorithms are challenged to keep up with the pace in data intensive applications.

To cater the needs of these applications, high performance computing and cloud computing are

utilized. These parallel computing environments increase productivity of applications.

Distributed computing expertise is confined to a relatively small section in the Computa-

tional Science and Engineering community. Researchers in fields like Biology, Mathematics and

Bio-Informatics have the need for distributed computing, but might lack the expertise. Inad-

vertent poor choices can lead to misuse of shared resources. Developing a framework to solve a

class of problems and deliver optimal performance is a solution to aid the usage of distributed

computing. Such a framework acts as an abstraction to hide complications and ease the usage.

Our work proposes one such framework to solve All-Pairs problems, a class of problems

in some research and business fields. All-Pairs problems can be illustrated with a popular

”handshake” problem (1), in which N people attend a meeting and every person shakes hand

with every other person in the meeting. This is a symmetric (commutative) interaction where

N(N−1)
2 handshakes take place. All-Pairs problems require every data element in a dataset to

interact with every other data element.

Consider the following dataset with N (say) data elements indexed from 0 to N-1,

EN = {e0, e1, ...eN−1}

An interaction between two elements can be computation between two elements, which can be

symmetric or asymmetric.

ei ↔ ej , i < j
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Figure 1.1 All-Pairs interactions for a set of elements

These elements can be primitive data elements, data structures like graphs, tries, files etc. and

complex structures with many fields like JSON objects, tweets, images, etc. Multiple All-Pairs

applications involve using these complex data structures.

More formally, All-Pairs problems is defined over two data sets where every data element

has to interact with every other data element in the data sets. A generalized All-Pairs problem

statement can be formally stated as follows:

M = F (A ��� B)

where A, B are data sets

F is the function used for computation

M is the output matrix Here M[i, j] is obtained from interaction between A[i] and B[j]

For instance, consider a data set of seven elements as given below:

EN = {e0, e1, e2, e3, e4, e5, e6}

All-Pairs algorithm which pairs every data element in the set with every other data element

gives the interactions as shown in Figure 1.1. It must be noted that interactions between data

elements {e0, e1} : (e0, e1) and (e1, e0) is considered to be the same due to commutative nature

in interaction. Thus it can be noted that, for a data set of N elements,
(
N
2

)
interactions take

place.

The computational complexity of the All-Pairs problems is defined by the number of in-

teractions between elements. For ’N’ number of elements, number of symmetric interactions

is given by N(N−1)
2 and number of asymmetric interactions are given by N (N − 1). Thus the

computational complexity is given by O
(
N2

)
.
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For large values of N, data management and memory management becomes complex. All-

Pairs problems inherently requires access to entire dataset, such that every element to be

interacted with every other element. Challenges arise when the data sets or the intermediate

data produced in the applications, exceeds the available memory size of the system. Many data

intensive All-Pairs applications in bio-informatics (2) and metagenomics (12) with large data

set (say N data elements), require multiple copies of intermediate data of N2 or sometimes N3

dimensions. For example, consider data intensive applications in biometrics establishing corre-

lation among faces in a large data set size, obviously maintaining all data elements in memory

exceeds available memory size of the system. A typical All-Pairs application in biometrics, Face

Recognition Grand Challenge (4) (5) consists of comparing a set of 4010 images each of 1.25

MB size. These applications maintain a similarity matrix, where each element in the matrix

represents comparison of two images which forms a matrix with 16,080,100 elements. Future

biometrics applications needs All-Pairs computation over 60,000 iris images, which is 200 times

bigger than the currently existing problem.

1.1 Approach

Minimizing required number of data elements in main memory of a node is managed in

distributed computing by using data replication. Selected data elements are replicated on dif-

ferent nodes and moved around to complete interactions between all elements on a distributed

manner. Nodes can communicate with each other to fetch required data segments or store

results to complete the computations. Outputs from different nodes can be consolidated or

forwarded to other applications in multiple ways. Minimizing replicated data to avoid redun-

dancy in memory and time consumption has been a recurring theme in this research domain.

Our research aims to address the time and memory challenges involved in solving the problem

using efficient memory management techniques.

We reduce the memory footprint by distributing data and overlapping communication time

among nodes with computation time. Our approach also employs round robin neighbor com-

munication approach between nodes. Each node communicates with its neighbor in an asyn-

chronous fashion to facilitate the computation - communication overlap. Data replication and
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distribution is managed in such a way that computation interactions are evenly distributed be-

tween all nodes. This framework achieves balanced load distribution, elimination of duplicate

computation and un-supervised computation-communication overlap.

We evaluate our approach using a real world, data intensive bio-informatics application,

PCIT (2), for finding associations between genes in co-expression networks using correlation and

information theory approaches. PCIT application is a quintessential data intensive All-Pairs

application where, each gene has to interact with every other gene to form correlation matrices

to determine associations between genes. Multiple implementations of PCIT application were

developed to resolve limitations like scalability, high time and memory usage. Previous PCIT

implementations were not scalable due to high memory footprint. Also, for large datasets PCIT

application consumed days together to complete the computation. We prove the effectiveness

of our work by scaling the PCIT application for large data sets with smaller memory footprint

and time consumption. Proposed framework completes the computation for more than 33,331

genes with optimized time and memory consumption. We evaluate the framework by analyzing

speedup performance and memory usage. We compare the results with best known results to

evaluate the effectiveness of this framework.

1.2 Contributions

• We develop a parallel computing abstraction and framework to compute All-Pairs ap-

plications. This framework aids non-computational distributed computing researchers to

utilize this computing power in their research fields.

• We address the recurring problem of high memory footprint in solving All-Pairs problems.

Our work reduces memory requirement reduced from N/
√
P to 3N/P for more than 9

processes (P ≥ 9).

• We demonstrate high scalability with super linear speed up. We experimented scalability

till 512 cores (32 nodes).

• We demonstrate the use of communication and computation overlap in achieving the

speed up.
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• We propose a simpler and easier data distribution principle.

• We distributed balanced load over all compute nodes and eliminated redundancy com-

pletely to achieve efficient All-Pairs computations with minimized memory footprint and

time consumption (For more than 9 processes, P ≥ 9).
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CHAPTER 2. COMPUTATIONAL FRAMEWORKS

Research in developing higher level abstractions for parallel programming is a recurring

theme and can be classified into three major types.

• Parallel programming languages abstractions

• Frameworks abstractions

• Abstractions for a specific class of applications

2.1 Parallel Programming Languages Abstractions

One of the ways to deliver higher level abstraction for users is creating a parallel program-

ming language. A parallel programming language is generally developed as an extension to

an already established sequential language with parallelizing abilities. Most of the parallel

programming languages developed were extensions of sequential languages like FORTRAN, C,

C++ and Java. For example, Charm++ (6) is a parallel programming language that is an

extension of C++ and Python.

2.2 Frameworks Abstractions

Frameworks are programming structures where the user can enter the sequential code and

the structure develops the parallelized machine code or intermediate code. Frameworks facili-

tate a huge ease of use and commercial value. An example framework is FraSPA (7) developed

in a user guided manner. This framework synthesizes parallel applications from existing se-

quential applications and middleware components for multiple platforms and diverse domains.

It is based on design patterns and generative programming techniques.
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2.3 Abstractions for a Specific Class of Applications

These abstractions are developed for a class of applications, where a user enters sequential

code for a computation and uses a framework to parallelize the job on multiple nodes. For

example, All-Pairs and wavefront problems (5) are examples of applications which can use

higher level abstractions for parallel programming. An implementation can be done by Dynamic

Linking or Static Linking and by developing required libraries. These abstractions do not

parallelize the sequential code given by the user, but use the parallel code for data distribution,

synchronization, communication and result collection. The abstraction uses a give global view

of data, communication transparency and control over the data. These abstractions offer high

performance as they are tailored for a set of applications and offer the following advantages:

• Hides pitfalls of distributed computing

• Improves code maintenance and reuse

• Reduces the number of lines of code to be written manually

• Hides the notion of parallel programming from the users purview

• Increases productivity

• Offers time efficiency

• Is easier to use

The work presented in this paper, belongs to the third category. We develop a framework

to present higher level abstraction for All-Pairs problems which fits the needs of several data

intensive applications.
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CHAPTER 3. PREVIOUS RESEARCH

3.1 Significance and Applications

3.1.1 Significance

All-Pairs problems fit the needs of many research and engineering fields. Also, many prob-

lems in science and engineering can be reduced to All-Pairs problems. Early filtering and data

clustering techniques (8) can be applied to reduce jobs to smaller jobs and apply them to

All-Pairs problems. All-Pairs problems can be used in research fields for two purposes.

• To understand the behavior of an algorithm based on datasets.

• To find the co-variance of two datasets based on the algorithm.

3.1.2 Applications

Scalability issues for All-Pairs problems have increased with rapid increase in data genera-

tion and data set size. For example, applications in bio-informatics and health related systems

(9) needed to reference a set of genes to every other gene set. Several advances in these fields

have led to massive increase in data generation. These applications are quintessential examples

for the Big data All-Pairs problems, which are aimed by this work.

All-Pairs problems occurs naturally in many research areas. In Physics, n-body motion

problem (10), (11) predicts the individual motion of celestial objects, where each object grav-

itationally interacts with every other object. In metagenomics, complex graphs formed from

protein clustering are used to identify protein functions. These graphs are formed by deter-

mining the likeness of a protein to every other protein.
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In data mining fields all-Pairs problem is used to understand the behavior of algorithms

(5). Similarly, researchers need to test multiple algorithms on a given data set to identify which

algorithm delivers better performance. Frameworks to solve these applications deliver quick

and reliable results with an efficient time and memory consumption.

3.2 Previous Work

Approaches have been developed on distributed clusters, multicore CPU’s, FPGA, Intel’

multi core MIC using openMP and MPI to perform such computations.

3.2.1 High Memory Footprint

A framework (5) was designed to solve All-Pairs algorithms showing improved performance

of applications in biometric and data mining fields. This work differentiates and shows the

performance improvement of Active storage over demand paging. Active storage is the process

of storing all data elements in the memory whereas demand paging is the process of query-

ing for data over network from FAT node. Data elements are distributed to all nodes using

spanning tree algorithm and performance in solving All-Pairs problems is compared between

active storage and demand paging schemes. Although active storage delivers high performance

with smaller turn around times, it requires all memory elements to be stored in memory and

demands high memory footprint. Such applications with large data sets, high memory foot-

print can eclipse local resources, stressing the necessity to relax the requirement of having all

elements in memory.

3.2.2 Memory footprint management

Memory footprint at a node is the amount of memory required to perform the computation

at the node. Memory footprint management has been addressed in many contexts.

N-body problems in molecular dynamics have a atomic decomposition problem which re-

quires every atom communicating with every other element. Authors in (13) proposed a method

to balance the load and perform communication between all atoms to perform force decompo-



www.manaraa.com

10

sition. For N elements and P processors, this method distributes two arrays of N/
√
P elements

to each processor.

Driscoll et al. (14) proposed an approach to solve All-Pairs problems with variable data

replication and relaxing the requirement of having all the elements in memory. They show that

data replication in the system can be a variable (c) and distributing data set into P/c subsets

(for P processors), one for each processor. Thus forming P/c smaller subsets to reduce the

memory footprint. Also, the authors show that for achieving lower bound on communication

between processors to solve the All-Pairs problems, the replication factor should be c =
√
P .

Thus, every processor receives a dataset of N/
√
P elements. An additional set of N/

√
P

elements is communicated between different processors to solve the All-Pairs problem. Thus

every processor holds two sets of N/
√
P elements. The additional data set is shifted and

copied between processors to generate all the required pairings between all data elements. The

algorithm works best for P = c2 processors.

Authors in (10) proposed an approach to solve All-Pairs problems with reduced memory

footprint upto 50%. They distribute data elements in a mathematical form called cyclic quo-

rums. Authors prove that cyclic quorums have All-Pairs property and cyclic quorums can be

used to solve All-Pairs problems. The basic idea is as follows. Let us assume the number of

nodes in the system is N. Let N nodes be denoted by set P={P0, P1, P2, P3,..., PN-1}. Let the

data be divided into N subsets of data set (called quorums), denoted by S={S0, S1, S2, S3,...,

SN-1} and each subset in S, Si follows certain properties of quorums and contains data segments

in a cyclic manner. The subset is said to be a quorum if it follows the following properties:

• Element ei is contained in the subset Si, for all i ε 1,2,3.. N

• Non-empty intersection property. Si ∩ Sj 6= Φ for all i, j ε 1,2,3.. N

• Equal work property: |Si|=k, for all i ε 1,2,3.. N, k<N

• Equal responsibly property: Element ei is contained in k Sj ’s for all i ε 1,2,3.. N

The above properties can be applied for N data segments to generate quorums and solve All-

Pairs problems. For example, let us consider a dataset for 7 elements given by:
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EN = {e0, e1, e2, e3, e4, e5, e6}

Let us assume that we solve this problem with seven nodes. Then seven quorums namely,

{S0, S1, S2, S3, S4, S5, S6} are generated as shown in Table 3.2.2. All-Pairs interactions gener-

ated from these subsets are shown in the table and it can be noticed that all data elements are

paired with every other data element. Every quorum set is given to its respective processor

and no further communication is necessary to complete the All-Pairs interactions. Table 3.2.2

can be referred for understanding the interactions that take place at every node.

Table 3.1 Computations performed at every node using quorums approach

Node Quorums Data element interactions

Node 1 e0, e1, e3 {e0, e1}, {e0, e3}, {e1, e3}
Node 2 e1, e2, e4 {e1, e2}, {e2, e4}, {e1, e4}
Node 3 e2, e3, e5 {e2, e3}, {e3, e5}, {e2, e5}
Node 4 e3, e4, e6 {e3, e4}, {e4, e6}, {e3, e6}
Node 5 e4, e5, e0 {e4, e5}, {e5, e0}, {e4, e0}
Node 6 e5, e6, e1 {e5, e6}, {e6, e1}, {e5, e1}
Node 7 e6, e0, e2 {e6, e0}, {e0, e1}, {e6, e1}

The above work aims at solving All-Pairs algorithms for large scale data sets with reduced

memory footprint. However, this method requires a brute force search to find the quorum sets

for each node. Once quorums are identified the rest of the problem is straight forward. Initial

data distribution has to follow the quorums which also induces computation overhead. This

approach is taken as benchmark for betterment here in solving All-Pairs problems.

3.3 Challenges

All-Pairs problems might appear simple on the outset but might pose multiple challenges

during implementation.

3.3.1 Number of Compute Nodes

It is a misconception to assume that assigning more number of processors to do the same

work will give better results. Authors in (5) considered a small experiment, where running an
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All-Pairs problems with 250 compute nodes gives worse performance than serial implementation

of the problem. This shows that choosing optimal number of compute nodes is necessary to

get optimal performance. In any parallel or distributed computing systems, additional nodes

reflects additional overhead in exchange of information and data. In All-Pairs problems in

particular, data needs to be transferred among nodes to complete all pairings with reduced

memory footprint. Thus as number of nodes increase, the communication load also increases

resulting in worse performance.

3.3.2 Data Distribution

Datasets have to be distributed to each node after choosing number of nodes. As mentioned

previously, active storage delivers high throughput but results in high memory consumption.

Demand paging reduces memory consumption but results in worse throughput. To achieve

higher throughput with reduced memory footprint, subsets of data should be distributed to all

nodes in an efficient manner.

3.3.3 Resource Limitations

Several unexpected limitations can occur while using distributed computing systems. More-

over, most of the clusters used for research purposes are shared among multiple users. Issues

with processing, communication, storage and memory are often observed. For example, while

writing outputs to files, the number of files open may eclipse the maximum limit. Also, issues

while handling output and faults while recording outputs are quite often. A framework to

handle all these tasks would reduce errors and makes problem solving easier.
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CHAPTER 4. APPROACH

Our approach aims at reducing memory foot print by using communication between nodes.

Reducing the number of elements required to store at every node, reduces data replication

and reduces memory footprint. We propose to use a simple round robin neighbor approach to

communicate between nodes to transfer required data to solve the problem while minimizing

the need for elements. By introducing communication - computation overlap, we aim to solve

the All-Pairs problems with
√
P (where P is number of processors) less data elements than the

quorums approach discussed in earlier chapter. The reduction in data replication and necessity

can be explained by comparing our work with previous works. Table 4.1 provides a comparison

and depicts the improvement in data replication of our work over previous works.

Table 4.1 Comparing previous works

Approach Data elements Communi- Comments

requirement cation

Moretti’s High Memory

Framework N No footprint

Replication of

Driscoll’s Work 2N/
√
P Yes High memory

footprint

Exhaustive

Cyclic Quorums N/
√
P No Complex initial

data distribution

Computation Ease of use,

Communication 3N/P Yes Low memory

Overlap footprint (P ≥ 9)

To explain the difference made by reducing the data elements consider Figure 4.1. The

graph represents the number of data elements required for each approach as the number of

processes increases. It can be seen that our approach needs considerably smaller number of
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Figure 4.1 Comparing data elements requirement for previous works

data elements as number of processors increases. This difference grows larger with increase in

both dataset size and number of processes.

4.1 How it Works

In our approach, each node accommodates three segments of the partitioned data. Every

node communicates with every other node in a round robin fashion to complete the computation

with a maximum of 3 data segments in the memory at any time instant. The communication

time is overlapped with computation time to minimize the delay caused due to transfer of

data segments between the nodes. Asynchronous communication routines are used to achieve

computation-communication overlap.

Every node needs to accommodate a maximum of three segments. The computation is

carried out in the following steps.

• Initially each node receives one of N/P data segments.

• In the first cycle, every node performs the computation on data segment available to it

also transferring the data segment available to it to the next node.
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• During the next cycle, every node performs computation between data segment initially

allocated to the node and data segment received during the previous cycle. At the same

time, the newly received data segment is communicated to the next node in round robin

neighbor fashion.

• For every following cycle, every node performs computation on the segment it receives in

the previous cycle and transfers the data segment on which the computation is performed

to the next node.

• Thus by the end of every cycle, every node will have a new data segment on which the

computation has to be performed. This way we overlap computation and communication

and minimize the time elapse in completing the computation.

• After every cycle, the data segment which is most recently used for computation in

previous cycle is rewritten with another segment during communication. This process is

depicted in algorithmic form for better understanding in Algorithm 1.

The concept of nodes communicating in a round robin- neighbor fashion can be better

explained with an example. Let us consider a system which has four nodes. Let us assume that

the data segment with 8 data elements and stated as follows: D={e0, e1, e2, e3, e4, e5, e6, e7}

Let the nodes be denoted as P={P1, P2, P3, P4}

Each node gets data partitions equal to

Total Number of data partitions
Number of nodes

Here, every node gets 2 data partitions. The nodes P1, P2, P3, P4 get the data segments

D1, D2, D3, D4 respectively. Each data segment is allocated with the following partitions.

D1={e0, e1}, D2={e2, e3}, D3={e4, e5}, D4={e6, e7}. Consider Table 4.2 how the data seg-

ments are communicated between nodes in round robin neighbor approach. Lets assume every

node has three buffers. One for initial data one for communication buffer and one for com-

putation buffer. Every node stores its initial data in initial buffer. The data segment that is

communicated between nodes is stored in the communication buffer. Since, the communication

and computation occurs simultaneously, we need an additional buffer to store the communicated
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buffer and start communication in the next cycle. Computation buffer is used for swapping

data from communication buffer and performing the computation. The communication in next

cycle rewrites the communication buffer with new data segment.

Table 4.2 Data segments occupying the memory of nodes in each time cycle

Cycle Node1 Node2 Node3 Node4

0 D1 D2 D3 D4

1 D1, D4 D2, D1 D3, D2 D4, D3

2 D1, D4, D3 D2, D1, D4 D3, D2, D1 D4, D3, D2

3 D1, D2, D3 D2, D3, D4 D3, D4, D1 D4, D1, D2

Table 4.1 explains the interactions that take place between different data segments at each

node. The computation gets completed by the end of four cycles, when the round robin com-

munication cycle gets completed. When we assume commutative nature between interactions

in All-Pairs problems, we can observe that few redundant interactions are performed. These

redundant computations can be avoided to achieve more performance. We have tested for re-

dundant interactions for different set of nodes and made few observations. We have observed

that few cycles can cause redundant interactions and the cycles differ with number of nodes.

• For odd number of processes, redundant interactions happen after N/2 + 1 cycles.

• For even number of processes, redundant interactions happen after N/2 cycles. In (N/2+

1)th cycle, half of the interactions are redundant.

To encounter these redundant interactions and improve performance, for odd number of pro-

cesses we perform just N/2 + 1 cycles to complete the All-Pairs problem. For even number of

processes, we perform first N/2 cycles and in the (N/2+1)th cycle, only the first half of processes

stay active and perform computations while the other half stay idle. This approach removes re-

dundant interactions to improve performance in solving All-Pairs problems. Table 4.1 explains

how data segments are communicated between nodes and communication-computation overlap

is performed. Assume n referred in the table to be an odd number for better understanding.
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Data: Two Input Data Sets

Result: All-Pairs problem solved in round-robin neigbor approach

Initialization of MPI processes;

P is number of processes;

my id is the id of each process;

while data set remaining do

determine the size of the data blocks each process should receive;

communicate the size of the data blocks each process is receiving;

distribute initial data in equal amounts to all processes;

end

Perform computation on the individual elements (if necessary);

while computation to be performed is not completed do

Perform computation on data blocks available on the node;

Perform Aynchronous communication;

source = ((my id - 1) + P) % P ;

destination = ((my id + 1) + P) % P ;

if my id == source then
Asynchronously send data block to destination node

end

if my id == destination then
Asynchronously receive data block from neighboring source

end

Loop : if Computation in progress is completed then

if receiving data block from neighbor node is completed then

Perform Computation on the two blocks, go back to the beginning of loop;

else
Wait until the block is received

end

else
continue the computation, go back to Loop

end

end

Algorithm 1: Solving All-Pairs problems with Round Robin Neighbor Approach
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Table 4.3 Computation at each node in each time cycle

Cycle Node1 Node2 Node3 Node4

0 D1 D2 D3 D4

1 D1, D4 D2, D1 D3, D2 D4, D3

2 D1, D3 D2, D4 D3, D1 D4, D2

3 D1, D2 D2, D3 D3, D4 D4, D1

4.2 Computation - Communication Overlap

Figure 4.2 a. represents communication and computation overlap phenomenon. In Figure

4.2 b. we show the scenario when communication takes more time than computation. In this

scenario, computation in the next cycle has to wait until the communication is completed.

This causes delay in starting computation and worsens performance. In Figure 4.2 c. we

show the scenario when computation takes more time than communication. In this scenario,

computation in next cycle is started as soon as the previous computation is completed since

the processor does not have to wait for any communication to get its data for performing the

computation.

4.3 Modeling the System

It may be difficult to predict the performance of a distributed computing system due to

a variety of reasons like programming style, frequency of input/output and dependencies on

network. Using a framework which performs similarly for all workloads, one can predict the

performance of the system. Factors like input data size, network bandwidth and job size deter-

mine the run time of the job. Understanding the working of a framework will certainly help in

modeling the jobs and drawing best outputs in utilizing the framework. Output of the frame-

work depends on choosing job size, number of processors to complete the job and bandwidth

of the network involved. Since the framework overlaps computation time with communication

time, time taken to complete each round of computation is maximum of computation and com-

munication times. This is given as follows:
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TEachRound = Max[TCommunication, TComputation]

Here, TEachRound is the time taken to complete one round of computation and communica-

tion. TCommunication is time taken to complete communication of data between two consecutive

nodes. TComputation is the time taken to complete the computation on one node. Communica-

tion time is determined by the amount of data sent between two nodes. Thus, time taken for

communication is data size over bandwidth of the network. Communication time is given as

follows:

TCommunication =
(n+m)s

B

where n and m are number of elements in each data set. s is the size of each element in the

data set. B is the Bandwidth of network being utilized.

Computation time is an estimate of the time taken to perform All-Pairs operation over

two datasets. Computation time is given by number of computations performed per processor

multiplied by time taken for each computation. For two data sets with m and n elements

respectively, the number of interactions is given by m ∗ n. Time taken for m ∗ n computations

is given by:

TComputation =
mn

P
∗ (t+D)

Here, t is the time taken to complete a function call. D is any delay associated in dispatching

job or writing output to files. Since these m ∗ n computations are equally distributed over P

processors, computation time is calculated for the same (m ∗ n)/P interactions. If it takes i

iterations to complete the job, then total time taken is i times time taken for each round. This

is given as follows:

TTotal = i ∗ TEachRound

We construct an example set to determine how the given equations can be used for modeling

the system to maximize the performance from the framework. We choose a value for P , the
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number of processors based on the other factors. The factors to be taken into consideration are

data sets size, time taken to complete a computation and bandwidth of the network. In Table

4.5, we set some sample values to justify how number of processes should be chosen based on

the factors mentioned above. Three scenarios for different bandwidths, size of data and time

taken to complete an interaction are considered to determine number of processes.

Table 4.5 Modeling System

n, m t (ms) s B p

4,000 1 1 100 200

4,000 1 1 10 20

1,000 1 1 100 50

1,000 1 10 100 5

100 1 1 100 5

100 100 1 100 50

4.4 Implementation

We implement our framework in such a way that the details of the parallel programming

are hidden from the user. The user is expected to include a header file which contains parallel

programming code and user has to write a piece of sequential code for the interaction between

two data elements in a prescribed function. Data distribution, communication between nodes,

load distribution and redundancy check are done by the code embedded in the header. When

the code is executed, the framework code in the header file utilizes the function written by the

end user to perform interactions between elements.
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CHAPTER 5. EVALUATION

In this chapter, we evaluate the results of applying our approach over a real world data

intensive application. We implemented the PCIT application (2) in such a way that it can be

set as a job to our framework. Data distribution and computation is performed as defined in

Chapter 3.

5.1 Test Setup

We conducted our experiments on a High Performance Computing (HPC) system called

CyEnce at Iowa State University. This cluster, supported by NSF MRI program is accessible

to researchers, faculty, principal and co-investigators on a shared basis. Every node has dual

Intel Xeon E5 8-core processors and 128GB of memory. Our experiments are run on 1 to 32

nodes (16 to 512 cores) and each node has 40 Gb IB interconnect. Although, each node has

a maximum memory of 128 GB, we limit our maximum memory consumption to 60 GB. This

limit is placed to make our environment similar to most of the rented cluster environments like

Amazon Web Services.

Three real and six simulated data sets were used for testing our approach. The simulated

data sets are produced for certain number of genes and conditions based on the information

given in (2). Real datasets include readings taken from cattle, mice and rice samples. Details

of the datasets used are given in Table 5.1. Real datasets are distinguished with an asterisk

(*) mark.

Number of genes are the primary factor to determine the computation complexity in All-Pairs

problems, so our simulated datasets are generated with an increasing number of genes. The

input columns correspond to the number of test subject conditions (2), (10) i.e number of
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samples used. The simulated datasets are generated with rows and columns similar to real

data sets.

We use MPI threads to perform parallelism in our code. The number of HPC nodes used for

each observation are varied to make comparisons with previous works and identify the variance

in behavior of the framework. Although general choice is 4, 8, 16 32, etc., we chose 4, 7, 8, 13,

16, etc. since cyclic quorums approach delivers different performance for singer difference sets

(10) and we choose this approach as benchmark for comparing our performance.

5.2 PCIT Application

PCIT application is a bio-informatics application used for identifying meaningful gene-

gene associations in a co-expression network (2). Authors in (2) combined partial correlation

coefficients with information theory approach to find gene associations. The PCIT algorithm

is used for reconstructing co-expression networks and correlation matrices to identify novel

biological regulators. This correlation matrices are built by comparing every gene with every

other gene forming an O(N2) computation. Then, the partial correlation coefficients in the

matrix are subjected to guilt-by-association heuristic to analyze if a gene is correlated to any

other gene using purely data. Except for the cyclic quorums approach this application is solved

by placing all data elements in memory.

PCIT application similar to several data intensive applications suffers resource limitations.

For instance, while dealing with a 16,000 gene data set on a single process, a correlation

matrix with 256,000,000 entries is generated which occupies approximately 1.9 GB memory.

When all the data elements are placed in the memory and considering the intermediate data

generated, for large data sets the memory consumption can easily eclipse local resources. Thus

PCIT application is a quintessential data intensive All-Pairs application which we are aiming

to solve.
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Table 5.1 Input Datasets Utilized in PCIT Experiments

Type Rows Columns

*Cattle 27364 5

Simulated 33331 5

Simulated 39298 5

*Mice 45265 5

Simulated 51232 1893

*Rice 57194 1893

Simulated 63166 1893

Simulated 69133 1893

Simulated 75000 1893

5.3 Results

We conducted the experiments to observe the execution time and memory foot print of the

application. We divide our observations for smaller data sets and larger data sets. We aim to

prove that our approach delivers good performance for any size of data set.

5.3.1 Smaller datasets

We consider the datasets which can be run on a single node as smaller data sets. We have

made few observations on how our framework performs on smaller datasets like 1000, 4000,

8000 genes for smaller number of processes upto 8. The graphs for those observations are

plotted as shown in Figure 5.1. In Figure 5.1, we show the speed up of parallel implementation

when compared to regular serial implementation of PCIT algorithm. In

As explained in Chapter 4, our approach’s performance depends on number of computing

nodes. If the computation time of a process is lesser than time taken to communicate data

between nodes, then framework delivers worse performance. In figure 5.1, consider the fall of

the curve representing 1000 genes data set. When the number of processes executing 1000 genes

is increased from 3 to 4, the computation time is lesser than communication time leading to

worse performance. For other curves in the graphs, speed up curve increases since computation

time is greater than communication time.

We test our approach with PCIT algorithm implementation mentioned in (2) to find our

approach performance on smaller data sets. As explained previously, our approach does not
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perform better than implementation explained in (2), for all number of processes. But for a

considerable computation load on processes, our approach gives better performance.

For example, PCIT implementation for 6400 genes in (2) takes 17.3 seconds where as our

approach takes 16.2 seconds to complete for 4 processes.

5.3.2 Larger datasets

We perform experiments on our framework with large datasets which could not be solved

previously (2). We aim to complete computations on these large datasets with smaller execution

time and memory foot print.

As shown in Table 5.1, we have used nine different data sets for testing our approach for

PCIT application. It should be observed that in Table 5.1, 5.2 we mean each node as 16

individual processes as each node contains 16 different cores. In Table 5.2, we compared the

memory footprint casted by our approach with memory footprint of quorums approach. It

can be seen that memory usage by our approach is considerably smaller than that of quorums

approach. The reason for this is the reduction in number of data elements allocated for each

process. For instance, Table 5.2 shows the memory footprint for a data set of 75,000 genes

with 1,893 conditions in every gene over multiple nodes. While working on a single node with

quorums approach, every process has to account for 18,750 genes(N/P ), which will lead to

maintaining a correlation matrix of size 2.61 GB approximately. On the other hand while

working with our approach on a single node, each process has to account for 4688 genes which

is
√
P times smaller. This shows the effect on lower memory footprint.

As mentioned in previous chapters, all data intensive applications are run on shared clusters

where resources are shared between multiple users. Most of the researchers run their applica-

tions on these shared clusters or rent cloud computing resources. Let us consider amazon web

services (15), (16) which set an upper limit of 60 GB memory usage per node. We consider the

same upper limit for memory consumption for smooth performance. In Table 5.2, we can see

that for 75000 genes and 1893 conditions, quorums approach crosses 60 GB upper limit for less

than 13 nodes. We highlighted the observations in bold which crossed the 60 GB upper limit.
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Figure 5.1 Variation of Speedup factor, Memory footprint and Number of Data Elements for

implementation of PCIT application on our approach



www.manaraa.com

29

Table 5.2 Memory Used Per Node (GB)

#Nodes Our work Quorums

1 42.263 189.669

4 34.97 142.506

7 17.636 81.88

8 16.752 95.537

13 7.438 59.091

16 5.0231 59.996

31 2.811 37.563

32 2.177 42.316

We performed the experiments on several datasets including simulated and real datasets as

mentioned in Table 5.1 on varied HPC computing nodes. The execution time for different data

sets are shown in Table 5.3. Our run time executions are faster than circular quorums approach

mentioned in (10) for more than one node (16 cores). We could perform PCIT application for

large data sets with smaller number of nodes (like 75,000 genes with 7 nodes) which was not

possible in (10). We observe that for first four data sets, the execution time has worsened when

the computing nodes are increased to 31 and 32. This is because the phenomenon explained in

Chapter 4, where the computation time is lesser than communication time.

In Table 5.3, it can be observed that execution times with single computing nodes are large

and more than execution times shown in cyclic quorums approach (10). This is due to the

fact that, our framework treats all the processes as independent processes on multiple nodes.

Processes that reside on same node and different cores, can directly read data from the shared

memory rather than explicitly communicating data from one core to another core. When

the framework is run on a single node with 16 cores, we provide data communication among

processes rather than accessing required data from shared memory. This communication results

in overhead in our execution times. In cyclic quorums approach, processes on the same node

access local memory for required data. Since memory access is faster than communication

routines, our approach is slower than cyclic quorums approach for single node executions.

Our results are dependent on MPI communication routines. MPI communications have cache

cancellation nature and sometime provide excessive overhead (17).
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CHAPTER 6. CONCLUSION

In this work, we proposed an approach to overlap computation and communication time

to scale algorithms to perform All-Pairs problems on large data sets. We decreased the data

elements requirement from N/
√
P in cyclic quorums approach to 3N/P and significantly lesser

than approaches which require all data elements in memory. Our approach significantly re-

duces memory foot print compared to all the All-Pairs implementations.We provided mathe-

matical forms to model the system for a given job time and dataset size. We implemented a

bio-informatics application on our approach to demonstrate our scalability, reduced time and

memory consumption with real and simulated datasets.
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